Novel high-throughput screen against Candida albicans identifies antifungal potentiators and agents effective against biofilms.
نویسندگان
چکیده
OBJECTIVES Microbial adhesion and biofilms have important implications for human health and disease. Candida albicans is an opportunistic pathogen which forms drug-resistant biofilms that contribute to the recalcitrance of disease. We have developed a high-throughput screen for potentiators of clotrimazole, a common therapy for Candida infections, including vaginitis and thrush. The screen was performed against C. albicans biofilms grown in microtitre plates in order to target the most resilient forms of the pathogen. METHODS Biofilm growth, in individual wells of 384-well plates, was measured using the metabolic indicator alamarBlue® and found to be very consistent and reproducible. This assay was used to test the effect of more than 120 000 small molecule compounds from the NIH Molecular Libraries Small Molecule Repository, and compounds that enhanced the activity of clotrimazole or acted on the biofilms alone were identified as hits. RESULTS Nineteen compounds (0.016% hit rate) were identified and found to cause more than 30% metabolic inhibition of biofilms compared with clotrimazole alone, which had a modest effect on biofilm viability at the concentration tested. Hits were confirmed for activity against biofilms with dose-response measurements. Several compounds had increased activity in combination with clotrimazole, including a 1,3-benzothiazole scaffold that exhibited a >100-fold improvement against biofilms of three separate C. albicans isolates. Cytotoxicity experiments using human fibroblasts confirmed the presence of lead molecules with favourable antifungal activity relative to cytotoxicity. CONCLUSIONS We have validated a novel approach to identify antifungal potentiators and completed a high-throughput screen to identify small molecules with activity against C. albicans biofilms. These small molecules may specifically target the biofilm and make currently available antifungals more effective.
منابع مشابه
Identification of antifungal natural products via Saccharomyces cerevisiae bioassay: insights into macrotetrolide drug spectrum, potency and mode of action.
Since current antifungal drugs have not kept pace with the escalating medical demands of fungal infections, new, effective medications are required. However, antifungal drug discovery is hindered by the evolutionary similarity of mammalian and fungal cells, which results in fungal drug targets having human homologs and drug non-selectivity. The group III hybrid histidine kinases (HHKs) are an a...
متن کاملAntifungal combinations against Candida albicans biofilms in vitro.
Candida biofilms display increased resistance to most antifungal agents. We have evaluated the efficacy of combinations of fluconazole (FLC), amphotericin B, and caspofungin (CSP) against Candida albicans biofilms in vitro. Indifference was observed for all the combinations of paired antifungal agents when a checkerboard titration method was used. Time-kill experiments revealed an antagonistic ...
متن کاملIn vitro pharmacodynamic properties of three antifungal agents against preformed Candida albicans biofilms determined by time-kill studies.
We have examined the in vitro activities of fluconazole, amphotericin B, and caspofungin against Candida albicans biofilms by time-kill methodology. Fluconazole was ineffective against biofilms. Killing of biofilm cells was suboptimal at therapeutic concentrations of amphotericin B. Caspofungin displayed the most effective pharmacokinetic properties, with > or =99% killing at physiological conc...
متن کاملStandardized method for in vitro antifungal susceptibility testing of Candida albicans biofilms.
Candida albicans is implicated in many biomaterial-related infections. Typically, these infections are associated with biofilm formation. Cells in biofilms display phenotypic traits that are dramatically different from those of their free-floating planktonic counterparts and are notoriously resistant to antimicrobial agents. Consequently, biofilm-related infections are inherently difficult to t...
متن کاملMicafungin at physiological serum concentrations shows antifungal activity against Candida albicans and Candida parapsilosis biofilms.
We assessed the in vitro activity of micafungin against preformed Candida biofilms by measuring the concentration of drug causing the most fungal damage and inhibition of regrowth. We studied 37 biofilm-producing Candida spp. strains from blood cultures. We showed that micafungin was active against planktonic and sessile forms of Candida albicans strains and moderately active against Candida pa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of antimicrobial chemotherapy
دوره 66 4 شماره
صفحات -
تاریخ انتشار 2011